
COP 3330: Java I/O Page 1 © Dr. Mark Llewellyn

COP 3330: Object-Oriented Programming

Summer 2011

Java I/O

Department of Electrical Engineering and Computer Science

Computer Science Division

University of Central Florida

Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu

HEC 236, 407-823-2790

http://www.cs.ucf.edu/courses/cop3330/sum2011

COP 3330: Java I/O Page 2 © Dr. Mark Llewellyn

Reading and Writing in Java

• The vast majority of computer programs require information to

be entered into them, and programs usually provide some form

of output information.

• Early in this course you created output using the simple

print() and println() methods of the

java.lang.System class and more recently you’ve

graduated to using the options available via GUIs.

• Many programs rely on input information being contained in a

data file that the program must read and process. In turn, the

program writes information to an output file. File I/O is often

used in conjunction with standard I/O, e.g. console output and

keyboard input.

COP 3330: Java I/O Page 3 © Dr. Mark Llewellyn

Reading and Writing in Java (cont.)

• Java provides many classes to perform the

program input and output.

• Program I/O refers to any I/O performed by the

program.

• File I/O refers specifically to I/O performed on

files.

• Program I/O can come from or be sent to the

monitor screen, data files, network sockets, or the

keyboard.

COP 3330: Java I/O Page 4 © Dr. Mark Llewellyn

Reading and Writing in Java (cont.)

• Java designers constructed program I/O to be based
on three principles:

1. The input and output is based on streams that have a
physical device at one end, such as a disk file, and data
streams into or out of the program in a flow of characters
or bytes. Classes are used to manage how the data comes
into or leaves a program.

2. I/O should be portable and should obtain consistent
results even though the underlying hardware platforms
may differ.

3. Java provides many classes that each perform a few tasks
instead of large classes that do many things.

COP 3330: Java I/O Page 5 © Dr. Mark Llewellyn

Streams

• A way to visualize data flowing into or out of a Java program is

to envision a stream of characters or a data pipeline.

• This stream of data is linked to a physical device, such as a file

stored on the hard drive to a network socket.

Java program apples, eggs,

gummi bears,

peppers, milk,

tea, pears

File

shoppinglist.txt

on disk.
apples, eggs

stream of

characters

COP 3330: Java I/O Page 6 © Dr. Mark Llewellyn

Streams (cont.)

• There are two types of streams in Java, byte streams and
character streams.

• Byte streams pump the data into and out of programs as
bytes. Byte stream classes are used for handling these
bytes. Binary data are stored either as 8-bit bytes or as
an ASCII character code set.

• Character streams are used for handling character data.
Character streams use Unicode, which is composed of
two-byte characters and can be used on an international
basis.

COP 3330: Java I/O Page 7 © Dr. Mark Llewellyn

I/O with Byte Stream Classes

• Byte stream classes in Java use a two-class hierarchical structure,
one for reading and one for writing.

• The top two classes are InputStream and OutputStream.

• Each of these superclasses has many subclasses designed for
working with different devices such as files and network
connections.

• Important methods include read(), and write().

• For reading and writing data files, use the FileInputStream
and FileOutputStream class objects. The simplest form of
these classes reads and writes data one byte at a time.

COP 3330: Java I/O Page 8 © Dr. Mark Llewellyn

I/O with Byte Stream Classes (cont.)

• FileInputStream reads data, one byte at a

time, and treats the data as integers.

• If the FileInputStream object tries to read

beyond the last character in the file, the read

method returns a negative one (-1).

COP 3330: Java I/O Page 9 © Dr. Mark Llewellyn

Byte Stream Methods

• The FileInputStream class has several read()

methods as well as other supporting methods. Some of

these methods are listed below.

int available(): Returns the number of bytes available that can be read in this file.

int read(): Reads one byte at a time and returns each byte as an integer.

void read(byte[] b): Reads up to b.length bytes of data from the input stream.

void read (byte[] b, int offset, int length): Reads length number

of bytes from the input stream beginning at the offset of the data.

void close(): Closes the file and releases resources that are associated with the input

stream.

COP 3330: Java I/O Page 10 © Dr. Mark Llewellyn

Byte Stream Methods (cont.)

• The FileOutputStream class has several write()

methods as well as other supporting methods. Some of

these methods are listed below.

void write(int b): Writes the byte to the output stream. The input is a single

integer and is converted to a byte.

void write(byte[] b): Writes up to b.length bytes of data into the output file

stream.

void write (byte[] b, int from, int length): Writes a portion of the

byte array to the output file stream. The from variable indicates the starting index, and

the length is the number of bytes.

void close(): Closes the file and releases any resources that are associated with the

output stream.

COP 3330: Java I/O Page 11 © Dr. Mark Llewellyn

Technique 1: Reading a File – 1 byte at a Time

• The first example program in this section of notes

demonstrates how to read a text data file one byte at a

time, and print each byte read as a character.

• The text file will be called: shoppinglist.txt

and contains the following:

apples, eggs, gummi bears

peppers, milk, coke

tea, pears, chicken

shrimp, onions, frosted flakes

shoppinglist.txt

COP 3330: Java I/O Page 12 © Dr. Mark Llewellyn

ReadFile1.java

COP 3330: Java I/O Page 13 © Dr. Mark Llewellyn

ReadFile1.java

The catch

blocks

COP 3330: Java I/O Page 14 © Dr. Mark Llewellyn

Output from ReadFile1.java

The input file contents:
shoppinglist.txt

Execution output

COP 3330: Java I/O Page 15 © Dr. Mark Llewellyn

Explanation of ReadFile1.java

• Once the FileInputStream object is created, the

object is queried to determine its size. The

available() method returns the number of bytes

that can be read from this file.

• In the for loop, one byte at a time is read and printed to

the command prompt window.

– Notice that print() was used which does not add a new

line character. The new line characters are already in the data

file. When the “\n” characters are read and output via the

print() method, we’ll see the linefeed in the output.

COP 3330: Java I/O Page 16 © Dr. Mark Llewellyn

Explanation of ReadFile1.java (cont.)

• There is a second manner in which this code could be
written which involves checking each integer as it is
read in, to see if it is a negative one (-1).

• Using this technique, you do not use the
available() method to determine the number of
bytes in the file, but rather just read until the last byte is
read.

• This modification is shown in the ReadFile2.java
program. Try this modification yourself to see that it
produces exactly the same results.

COP 3330: Java I/O Page 17 © Dr. Mark Llewellyn

ReadFile2.java

COP 3330: Java I/O Page 18 © Dr. Mark Llewellyn

Output from
ReadFile2.java

COP 3330: Java I/O Page 19 © Dr. Mark Llewellyn

Technique 2: Reading a File into a byte Array

• For our second example using byte streams, we’ll read

an entire file into a byte array using a single read

statement.

• Just to do something to the data that is read, we’ll

reverse the characters in this array and write the

reversed array to an output file.

– The name of the input file will again be

“shoppinglist.txt” and the reversed file that will be

created by the executing program will be named

“tsilgnippohs.txt” .

COP 3330: Java I/O Page 20 © Dr. Mark Llewellyn

ReadFile3.java

COP 3330: Java I/O Page 21 © Dr. Mark Llewellyn

ReadFile3.java

The catch

blocks

COP 3330: Java I/O Page 22 © Dr. Mark Llewellyn

Output from ReadFile3.java

COP 3330: Java I/O Page 23 © Dr. Mark Llewellyn

Buffered Character Stream File I/O

• Reading and writing program data using byte stream classes is

straightforward, but it presents problems for the Java

programmer.

• The data comes into the program as bytes (integers) or in byte

arrays. (integer arrays). If the programmer needs to work with

each data item in the byte array, they would need to find a way to

separate the individual data items.

– For example, if we needed to list the items in our shopping list, we would

need to go through the byte array, pulling out the letters, and starting a new

item when we encountered a comma or a new line.

– If you’re thinking that there must be a better way to do this, you’re right!

COP 3330: Java I/O Page 24 © Dr. Mark Llewellyn

Buffered Character Stream File I/O (cont.)

• Wrapper Classes

– Java provides many wrapper classes. A wrapper class is a
programming term that is part of the Java jargon. If you look for
Java classes with “Wrapper” in the name, you will not find any.

– Wrapper classes wrap one class in another class, thus improving the
features of the first class.

– You’ve already used the Integer, Double, and Float

wrapper classes. Each of these classes wraps a single primitive
data type value into a class and provides useful methods for the
programmer who is working with the primitive type values.

– For example, the BufferedReader wrapper class provides a
readLine() methods to read data one line at a time.

COP 3330: Java I/O Page 25 © Dr. Mark Llewellyn

Buffered Character Stream File I/O (cont.)

• For I/O, Java provide stream buffering classes that

provide the programmer with a means to attach a

memory buffer to the I/O streams.

• Having a memory buffer attached to the I/O stream

allows the programmer to work on more than one byte

or character at a time.

• There are buffered classes for both byte streams and

character stream use.

COP 3330: Java I/O Page 26 © Dr. Mark Llewellyn

Buffered Character Stream File I/O (cont.)

• Java’s FileReader class allows you to read a data

file as characters instead of bytes.

• You can wrap the FileReader class in a

BufferedReader class, which provides a

readLine() method and the ability to read a data

file one line at a time.

• This is done with a line of code such as this:

BufferedReader br = new BufferedReader(

new FileReader(FILE_NAME));

COP 3330: Java I/O Page 27 © Dr. Mark Llewellyn

BufferedReader Methods

void close(): Closes the file and releases any resources associated with the

output stream.

void mark(int readAheadLimit): Marks the present position in the stream.

boolean markSupported(): Returns true if this stream supports the mark()

operation. The BufferedReader class supports this operation.

int read(): Reads a single character.

int read(char[] buf, int offset, int length): Reads characters

into a portion of an array.

String readLine(): Reads a line of text.

boolean ready(): Returns true if this stream is ready to be read.

void reset(): Resets the stream to the most recent mark.

long skip(long n): Skips n characters in the stream. Returns the number of

characters actually skipped.

COP 3330: Java I/O Page 28 © Dr. Mark Llewellyn

Buffered Reader Examples

• In order to introduce you to some other constructs in Java, the
next program, in addition to used a buffered reader object, I’ve
used vectors and made the program a GUI.

• The second example is also a GUI but reads multiple file lines
per activation.

• When programming with data files in any language, it is
important that the programmer know how the data file is
designed. The programmer must write the corresponding read
statements to match the file design in order to read the file
accurately.

– In this case the file consists of one state name per line in the file.

COP 3330: Java I/O Page 29 © Dr. Mark Llewellyn

readStates.java

COP 3330: Java I/O Page 30 © Dr. Mark Llewellyn

readStates.java

(continued)

COP 3330: Java I/O Page 31 © Dr. Mark Llewellyn

Output from readStates.java

This part of the execution

prints the contents of the file to

the command prompt window.

This is the GUI before clicking on

the state button. The drop-down

menu is not shown.

The drop-down menu appears

when the GUI button is clicked

given the user the option of

selecting another state.

COP 3330: Java I/O Page 32 © Dr. Mark Llewellyn

Buffered Reader Example 2: readWeather.java

• The BufferedReader readLine() method is handy anytime

the data file is organized with data on individual lines.

• In this next example, the data file represents weather data as a

mixture of textual and numeric information, yet the

readLine() method is used for all the lines. The file is

organized in the following manner:

Date

Reporting Station

High Temperature in Fahrenheit degrees

Low Temperature in Fahrenheit degrees

Relative Humidity at 12 noon stated as a percentage 0.xx

Rainfall total in inches for past 24 hours

COP 3330: Java I/O Page 33 © Dr. Mark Llewellyn

readWeather.java

COP 3330: Java I/O Page 34 © Dr. Mark Llewellyn

readWeather.java

(continued)

COP 3330: Java I/O Page 35 © Dr. Mark Llewellyn

Output from readWeather.java

Input file
WeatherSummary.txt

COP 3330: Java I/O Page 36 © Dr. Mark Llewellyn

String Tokenizers

• If the data file is organized so that there is one data item on each
line, the job of reading the data from the file is simple. The
BufferedReader’s readLine() method returns each line as a
String and it can be converted to a numeric value if necessary.

• What happens when there is more that one data item per line in
the file? Maybe there is a series of text items or numbers that are
separated by commas in the file. There may also be characters in
the file that you do not want to process in the program. How do
you handle these situations?

• Java has a helper class, called StringTokenizer, which
helps to separate individual parts of the String read in by the
readLine() method.

COP 3330: Java I/O Page 37 © Dr. Mark Llewellyn

String Tokenizers (cont.)

• The StringTokenizer class is most helpful when the
program reads textual data from a file.

• The lines read from the data file are read as Strings. The
StringTokenizer can be used on any String, such as the
input from JOptionPane.showInputDialog(), a
String that you initialize in a program, or a String that is
filled by a readLine() method.

• The StringTokenizer class has limited capabilities
involving what can be pulled out of the String. A good rule of
thumb is that if a single character separates data items in the line,
such as a comma, or a space, the StringTokenizer class is
the one to use.

COP 3330: Java I/O Page 38 © Dr. Mark Llewellyn

String Tokenizers (cont.)

• For more precise or complicated pattern matching, you would
need to use the Pattern and Matcher classes from Java’s
java.util.regex package.

• Recall the example ReadFile1.java from page 12 in this set of
notes. This program read a “shoppinglist.txt” of 3 items
per line which were separated by commas and spaces in the lines
of the data file (see page 11). In ReadFile1.java we read this file
one byte at a time and simply echoed it to the output.

• In the next example, we will read the same file but there will be
only commas in this file, no spaces between the data items. If we
want to handle each of the items in the list separately, we need to
pull each item off the line when the program reads the line from
the file.

COP 3330: Java I/O Page 39 © Dr. Mark Llewellyn

String Tokenizers (cont.)

• As the first line of the file is read into a String variable, we
must pull out “apples”, “eggs”, and “gummi bears” and place
them in separate variables. This is the job of the
StringTokenizer.

• The StringTokenizer is passed the String we want it to work
on, and we must tell it what delimits each data item. In this
case we need to tell it that the delimiter in the file is a comma.

• We’ll ask the tokenizer object how many tokens it finds in our
line and then we’ll loop through the object, extracting the
strings that are delimited by the commas.

• The program readFileToken.java illustrates this
process.

COP 3330: Java I/O Page 40 © Dr. Mark Llewellyn

readFileToken.java

COP 3330: Java I/O Page 41 © Dr. Mark Llewellyn

The StringTokenizer is

operating on String
variable line and the

delimiter is specified as a
,.

readFileToken.java

(continued)

COP 3330: Java I/O Page 42 © Dr. Mark Llewellyn

Output from readFileToken.java

This execution specified the

file named “shopplinglist.txt”,

which was not a valid file.

This generated an error

message through the

exception handler.

This execution

specified a correct

input file. You can

see the output from

the StringTokenizer

COP 3330: Java I/O Page 43 © Dr. Mark Llewellyn

String Tokenizers (cont.)

• In this next example of using the StringTokenizer class,

everything is basically the same as it was for the

readFileToken.java program with the exception that now,

there are a varying number of items per line in the data file. In

addition, we’ll add some characters to the file that we want the

tokenizer to strip out for us.

hammer, nails, #10 x 1-1/4” wood screws

10d nails, hack saw blades, teflon tape, ruler

pneumatic finishing nailer, pliers

#6 x 1” allen head bolt

PVC cement, PVC primer, scroll saw

7/16” open end wrench, ½” impact socket

file: toollist.txt

COP 3330: Java I/O Page 44 © Dr. Mark Llewellyn

String Tokenizers (cont.)

• These tasks pose no problem for the StringTokenizer.

For example, if we are not sure how many tokens appear on a

given line of the data file, we’ll simply run a loop extracting

values and use the hasMoreTokens() method, which returns

true if there are more tokens in the tokenizer object.

• The format of the file we will use will contain a space after each

comma. We want to strip out this leading space so that the data

items are correctly represented. Thus, when we extract

“ruler” from the third line, the tokenizer extracts “

ruler” because it extracts the data between the commas,

including the leading space.

COP 3330: Java I/O Page 45 © Dr. Mark Llewellyn

String Tokenizers (cont.)

• Use the String class’s trim() method that returns a

copy of the String with leading and trailing

whitespace characters omitted.

• Once this is done the strings are stored in a Vector

object named partsList. [Recall that a vector is a

dynamic array (see java.util.Vector for

more).]

COP 3330: Java I/O Page 46 © Dr. Mark Llewellyn

readTools.java

COP 3330: Java I/O Page 47 © Dr. Mark Llewellyn

Collections

method

sort()

allows us to

sort the

contents of

the Vector.

readTools.java

(continued)

COP 3330: Java I/O Page 48 © Dr. Mark Llewellyn

Output from readTools.java

Notice that the invocation of

the Collections method
sort() has produced a

sorted list of tools.

COP 3330: Java I/O Page 49 © Dr. Mark Llewellyn

File Output with the BufferedWriter Class

• The BufferedWriter class works in a similar manner to

the BufferedReader class.

• A FileWriter object is wrapped in a BufferedWriter

class which makes it possible to write Strings to an

output file.

• The BufferedWriter constructors require a FileWriter

object. The FileWriter object is created and then used

in the constructor for the BufferedWriter.

COP 3330: Java I/O Page 50 © Dr. Mark Llewellyn

File Output with the BufferedWriter Class (cont.)

• As we’ve seen before, this can be broken up into

two separate steps:

//The BufferedWriter wraps the FileWriter object

//This allows us to write a data file one line at a time

FileWriter writer = new FileWriter();

BufferedWriter bufWriter = new BufferedWriter(writer);

• As before, the more common and preferred

technique is to combine this into one line:

BufferedWriter bufWriter = new BufferedWriter (new FileWriter());

COP 3330: Java I/O Page 51 © Dr. Mark Llewellyn

BufferedWriter Methods

void close(): Closes the file and releases any resources associated with

the output stream.

void flush(): Flushes any characters out of the output stream.

void newLine(): Writes a line separator into the output stream.

void write(char[] buf, int offset, int length): Writes

a portion of a character array, beginning at the offset and writing length
number of characters.

void write(char c): Writes a single character.

void write(String s, int offset, int length): Writes a

portion of the String, beginning at the offset character. Writes length

number of characters.

COP 3330: Java I/O Page 52 © Dr. Mark Llewellyn

File Output with the BufferedWriter Class (cont.)

• In the next example program, we’ll read the names of bicycles
from the file bikes.txt and write all of the bikes in which
are named Colnago into a output file named colnagos.txt.

• The input file (shown on page 57) contains one bike name per
line.

• In the program we create BufferedReader and
BufferedWriter objects and then read each line, searching
it with the String class’s indexOf() method. The
indexOf() method returns the location of the substring in
the String and a –1 if it cannot find the substring. If we
locate a Colnago bike, we’ll write its entire name to the output
file using the BufferedWriter class’s write() method
that accepts strings as input.

COP 3330: Java I/O Page 53 © Dr. Mark Llewellyn

File Output with the BufferedWriter Class (cont.)

• The write() method we’re using writes a

portion of the String and requires the beginning

position and the number of characters to be

written.

– Since we want to write the entire string, we’ll use an

offset of 0 and bikeLine.length() for the

number of characters to be written.

COP 3330: Java I/O Page 54 © Dr. Mark Llewellyn

FindColnagos.java

COP 3330: Java I/O Page 55 © Dr. Mark Llewellyn

uses the last

form shown on

page 51

findColnagos.java

(continued)

COP 3330: Java I/O Page 56 © Dr. Mark Llewellyn

Output from FindColnagos.java

Input file: “bikes.txt”

Generated output file:

colnagos.txt

COP 3330: Java I/O Page 57 © Dr. Mark Llewellyn

Final Example Program

• Our final example is a program that includes the

use of buffered readers and writers, string

tokenizers, and exception handling.

• The purpose of this program is to read a file

containing trip expenses and sum the various

items and write the results to an output file.

– Input file: tripexpenses.txt

– Generated output file: totaltripcost.txt

COP 3330: Java I/O Page 58 © Dr. Mark Llewellyn

Final Example Program (cont.)

• The input file tripexpenses.txt contains the

following information.

denotes a comment and is ignored

This list the items and costs for a trip

Airline tickets

$1975.00

Rental Car

$379.99

Gas for the rental car

$68.00

Hotel for 3 nights

$190.18 $190.18 $179.74

Meals for 3 days

$89.68 $189.90 $78.50

Parking garage fees

$9.50 $9.50 $2.75

Toll fees

$3.75 $3.75

uncomment the next line to cause an error

Movie tickets

COP 3330: Java I/O Page 59 © Dr. Mark Llewellyn

Final Example Program (cont.)

• The program reads a line at a time and any line beginning
with a “#” is not processed. The program will assume that
if the line does not begin with a “#”, then it is a line that
contains expense items written with the “$” as the
delimiter, and the object is searched for tokens.

– Remember that the “$” is not part of the extracted part of the line,
and the nextToken() method pulls the data from between the
delimiters.

• Once we’ve extracted a String containing a numeric value,
we’ll use the parseFloat() method to convert the value to a
float.

• The numeric values will be summed and the total value is
written to the output file.

COP 3330: Java I/O Page 60 © Dr. Mark Llewellyn

Final Example Program (cont.)

• I’ve included a bunch of JOptionPane message

boxes after each method call to trace how the

program is executing.

• I would encourage you to play around with this

program. For example, see how many different

ways you can get it to throw and exception.

COP 3330: Java I/O Page 61 © Dr. Mark Llewellyn

TripExpenses.java

COP 3330: Java I/O Page 62 © Dr. Mark Llewellyn

TripExpenses.java

(continued)

COP 3330: Java I/O Page 63 © Dr. Mark Llewellyn

TripExpenses.java

(continued)

COP 3330: Java I/O Page 64 © Dr. Mark Llewellyn

TripExpenses.java

(continued)

COP 3330: Java I/O Page 65 © Dr. Mark Llewellyn

Output from TripExpenses.java

First output from
TripExpenses.java

Second output from
TripExpenses.java. Notice

how the header line is displaying

the name of the input file in these

first two outputs.

Third output from
TripExpenses.java. Notice

that the header line has changed

to reflect the output file name.

COP 3330: Java I/O Page 66 © Dr. Mark Llewellyn

Output from TripExpenses.java (cont.)

Fourth output from
TripExpenses.java

Fifth output from
TripExpenses.java.

Sixth output from
TripExpenses.java.

The file “totaltripcost.txt”

produced by the program
TripExpenses.java as displayed in

Notepad.

