Instructor : Dr. Mark Llewellyn

markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3330/sum2011

Department of Electrical Engineering and Computer Science
Computer Science Division
University of Central Florida

COP 3330: Javal/O Page 1 © Dr. Mark Llewellyn

Reading and Writing In Java

« The vast majority of computer programs require information to
be entered into them, and programs usually provide some form
of output information.

« Early In this course you created output using the simple
print () and println () methods of the
java.lang.System class and more recently you’ve

graduated to using the options available via GUIs.

« Many programs rely on input information being contained in a
data file that the program must read and process. In turn, the
program writes information to an output file. File 1/O is often
used in conjunction with standard 1/0O, e.g. console output and
keyboard input.

’

COP 3330: Javal/O Page 2 © Dr. Mark Llewellyn g’)l

Reading and Writing in Java (cont.)

« Java provides many classes to perform the
program input and output.

» Program 1/O refers to any /O performed by the
orogram.

« File 1/0 refers specifically to 1/0 performed on
files.

* Program 1I/O can come from or be sent to the
monitor screen, data files, network sockets, or the
keyboard.

COP 3330: Javal/O Page 3 © Dr. Mark Llewellyn

Reading and Writing in Java (cont.)

« Java designers constructed program 1/O to be based
on three principles:

1. The input and output is based on streams that have a
physical device at one end, such as a disk file, and data
streams into or out of the program in a flow of characters
or bytes. Classes are used to manage how the data comes
Into or leaves a program.

2. 1/0 should be portable and should obtain consistent
results even though the underlying hardware platforms
may differ.

3. Java provides many classes that each perform a few tasks
Instead of large classes that do many things.

’

COP 3330: Javal/O Page 4 © Dr. Mark Llewellyn g’)l

Streams

« A way to visualize data flowing into or out of a Java program is

to envision a stream of characters or a data pipeline.

« This stream of data is linked to a physical device, such as a file
stored on the hard drive to a network socket.

N File
apples, eggs shoppinglist.txt
¢ on disk.

Java program apples, eggs,
gummi bears,
peppers, milk,

tea, pears
7 stream of \/
characters
COP 3330: Javal/O Page 5 © Dr. Mark Llewellyn

Streams (cont.)

» There are two types of streams In Java, byte streams and
character streams.

» Byte streams pump the data into and out of programs as
bytes. Byte stream classes are used for handling these
bytes. Binary data are stored either as 8-bit bytes or as
an ASCII character code set.

« Character streams are used for handling character data.
Character streams use Unicode, which iIs composed of
two-byte characters and can be used on an international
basis.

[
COP 3330: Javal/O Page 6 © Dr. Mark Llewellyn @j

/O with Byte Stream Classes

Byte stream classes in Java use a two-class hierarchical structure,
one for reading and one for writing.

The top two classes are ITnputStreamand OutputStream.

Each of these superclasses has many subclasses designed for
working with different devices such as files and network
connections.

Important methods include read () , and write () .

For reading and writing data files, use the FileInputStream
and FileOutputStream class objects. The simplest form of
these classes reads and writes data one byte at a time.

¢

COP 3330: Javal/O Page 7 © Dr. Mark Llewellyn g’)l

/O with Byte Stream Classes (cont.)

« FileInputStream reads data, one byte at a
time, and treats the data as integers.

* |If the FileInputStream object tries to read
beyond the last character in the file, the read
method returns a negative one (-1).

COP 3330: Javal/O Page 8 © Dr. Mark Llewellyn

Byte Stream Methods

e The FileInputStream class has several read ()
methods as well as other supporting methods. Some of
these methods are listed below.

int available () : Returnsthe number of bytes available that can be read in this file.
int read () : Readsone byte at a time and returns each byte as an integer.
void read(byte[] b): Readsup to b.length bytes of data from the input stream.

void read (byte[] b, int offset, int length) : Reads length number
of bytes from the input stream beginning at the offset of the data.
void close () : Closes the file and releases resources that are associated with the input

stream.

COP 3330: Javal/O Page 9 © Dr. Mark Llewellyn

Byte Stream Methods (cont.)

« The FileOutputStream class has several write ()
methods as well as other supporting methods. Some of
these methods are listed below.

void write (int b) : Writes the byte to the output stream. The input is a single
integer and is converted to a byte.

void write (byte[] b) : Writes up to b.length bytes of data into the output file
stream.

void write (byte[] b, int from, int length) : Writes a portion of the
byte array to the output file stream. The from variable indicates the starting index, and
the length is the number of bytes.

void close () : Closes the file and releases any resources that are associated with the

output stream.
(. ()
COP 3330: Javal/O Page 10 © Dr. Mark Llewellyn @J

Technique 1: Reading a File — 1 byte at a Time

* The first example program in this section of notes
demonstrates how to read a text data file one byte at a
time, and print each byte read as a character.

 The text file will be called: shoppinglist.txt

and contains the following:

apples, eggs, gummi bears
peppers, milk, coke
tea, pears, chicken

shrimp, onions, frosted flakes

/

shoppinglist.txt

COP 3330: Javal/O Page 11

© Dr. Mark Llewellyn

M shoppinglist.td -1 |J] ReadFile2.java -\I [J] ReadFile3.java -\IE read5tates.java -] st

= f/fFile: EReadFilel.java
SO This program reads a file using FileInputStream object.
S5 It reads the f£file a byvte at a time and prints the char to the sScreen.
S MJIL 7/22/72011
= import java.io.FilelInputStream;
import java.io.I0Exception;
import java.io.FileNotFoundException: ReadFHelJava
poblic clas=s EHEeadFilel {
= poblic static void main(String[]l arg=s) {
EcadFilel app = new BeadFilel () :
Svstem.=exi1t (0) ;
Yo Send main method
= public ReadFilel () i
SiWe create a FilelInputStream object and pass the nams of the
Fifdata file imto the constructor. If Java can't find the file,
Sifit throws a FileMotFoundException.

try {
FileInputStream fileln = new FilelInputStream("shoppinglist.txt"™) ;
SAih=zk the file obiject how many bytes are in the file.
int =ize = filelIn.awvailabkle ()
int oneChar;
for{(int i = 0; i < =ize; +4+1i) 1

S/Read the file one byte at a time.
JFIf a read error then throw an IOException.
oneChar = fileIn.read/() :
F/print without linefeeds
Svestem.ocut.print { (char) oneChar) ;

}//end for loop

fileIn.close ()

P fend try statement

COP 3330: Javal/O Page 12 © Dr. Mark Llewellyn

= Java - File 0/stc/ReadFiled java - Eclpse

File Edit Source Refactor Navigate Search Project Run Window Help

-ElEe B-0-Q- G- ®C 4 PO
g| ERACRER AR

& N

ReadFilel.java

The catch
blocks

I

) Readfileljava 3 2 shoppinglitst | 1) ReadFilljave |) ReacFiSjova | [readStetesjava |) sateListot

}//end try statement

catch (FileNotFoundException fnfe){
System.out.println("Can't find the file!™);

}//end catch blockl

catch (IOException ioe){
System.out.println("Problem reading the file!");

}//end catch block?

}//end constructor
}//end class

‘ Writable Smart Insert ‘ 3813

e —— e —

COP 3330: Javal/O Page 13 © Dr. Mark Llewellyn

Output from ReadFilel. java

Search Project RBun Window Help

03~ = & (&

File Edit Source Refactor MNavigate Search Project Bun Window Help
&= _
b~ &l v %0 O - - " 3~ FrO0-Q- (& Java
S # @~ &G 4~
4] ReadFilel java shoppinglist.bd &2 &4 = I c
= = =
apples, eggs, gummi bears -+ - . . - - [
I:E peppers, milk, coke o=)E::l <“'1:|
tea, pears, chicken E Console 532 = 8
shrimp, onions, frosted flakes = 5

<terminated> ReadFilel [Java Application] C:\Program Files\Java'jreghbin'javi

EII:IEh

=l X %|GEE(EE =B -9
il Iapples, eggs, gummi bears -
; peppers, milk, coke &
tea, pears, chicken El
rt 4

shrimp, onions, frosted flakes

The input file contents:
shoppinglist.txt

T e e

Execution output L

COP 3330: Javal/O Page 14 © Dr. Mark Llewellyn

Explanation of ReadFilel.java

 Once the FileInputStream object Is created, the

object i1s queried to determine Its size. The
available () method returns the number of bytes

that can be read from this file.

* |n the for loop, one byte at a time Is read and printed to
the command prompt window.

— Notice that print () was used which does not add a new

line character. The new line characters are already in the data

file. When the “\n” characters are read and output via the
print () method, we’ll see the linefeed in the output.

[
COP 3330: Javal/O Page 15 © Dr. Mark Llewellyn @j

Explanation of ReadFilel.java (cont.)

« There iIs a second manner in which this code could be
written which involves checking each integer as it Is
read In, to see If it is a negative one (-1).

« Using this technique, you do not wuse the
available () method to determine the number of

bytes In the file, but rather just read until the last byte is
read.

« This modification is shown in the ReadFile?2.java

program. Try this modification yourself to see that it
produces exactly the same results.

’

COP 3330: Java l/O Page 16 © Dr. Mark Llewellyn gjn

J'Il FeadFilel.java (shoppinglist.tdt [rm *ReadFile2.java 2 i ReadFile3.java]J'Il readStates.java

\I state

£ AL eadsS L Li1le 2 DYLeE alb a LIS alid prAines LS Cliall Lo LS SCIiecil.
S MJIL 72272011

“import java.io.FileInputStream:
import java.io.ICException:
import java.io.FileNotFoundException;

ReadFileZ2.java

pobklic class ReadFilelZ i
= poblic =tatic void main({ String[] arg=s) {

wih EeadFile?Z app = new ReadFileZ ()

System.=exit (0)
1S fend main method

= pullic EeadFileZ () i
SAWe create a FileInputStream ockject and pass the name of the
SAidata f£file imto the constructor. If Java can't find the f£ile,

SAic throws a FileMotFoundException.

f/print without linefeeds
System.out.print{ (char)oneChar) ;
YA Send while loop
fileIn.clo=se ()
Y fend tcry statemenﬂ
catch (FileNotFoundException fnfe) {
Syvstem.cut.printiIn{("Can't find the £ile!™) :
Y/ Send catch block 1
catch (ICException ioe) {
System.cut.println ("Problem reading the £filel™)
Y/ Send catch block 2
Yo fend constructor
Yo S end class

COP 3330: Javal/O Page 17 © Dr. Mark Llewellyn

try {
FileInputStream fileln = new FilelInputStream{"shoppingli=st.txt™) ;
int oneChar;
fS/fmodified way of reading the file — 1 int at a time
while (| (oneChar = fileIn.read()) 1= -1} i

Output from
ReadFileZ2.java

File Edit Mawvigate 5Search Project Bun Window Help
5 - 5 (7 Tava)
- O - Q-

B G - b =T

> 5l v %0 & - o v

.-H-EA Prokb (@ Jawa [r@;. Decl (E Cons 2 = =

<terminated> ReadFile2 [Jawva Application] C:M\Program Fi

=

il x % | G pE[EE) =« = -9 -
apple=s, egg=s, gummi bhears -
peppers, milk, coke

tea, pears, chickemn

shrimp, onions, frosted flakes

COP 3330: Javal/O Page 18 © Dr. Mark Llewellyn

Technique 2: Reading a File into a byte Array

« For our second example using byte streams, we’ll read
an entire file into a byte array using a single read
statement.

« Just to do something to the data that is read, we’ll
reverse the characters in this array and write the
reversed array to an output file.

— The name of the input file will again be
“shoppinglist.txt” and the reversed file that will be

created by the executing program will be named
“tsilgnippohs.txt”.

.
COP 3330: Java l/O Page 19 © Dr. Mark Llewellyn g);

4] ReadFilel java (shoppinglist.td Ii@ FeadFile2.java Irm ReadFile3.java = 4] readStates.java 1 statelist.tet \I}}Eﬂ -
® //File: FEReadFile3.java[] -
“import java.io.FileInputStream;

import java.io.FileCutputStream;
import java.io.I0Exception;

ReadFile3.java

import java.io.FileNotFoundException:

public class ReadFile3 {
= public =tatic void main(S5tring[] args) {
EeadFiled app = new ReadFile3 () :
Syvstem.=sxit(0) ;
}//end main method
= poblic ReadFile3 () i
fiWe create FilelnputStream and FileCutputStream objects, S/pas=zing the filename to each|E
try {
FileInputStream fileIn = new FileInputStream("shoppinglist.txt™)
FileCuntputStream filefut = new FileCutputStream("tsilgnippohs.tcxt™);
SAask the file object how many bytces are in the file.
int =ize = fileln.availabkle():
byte array[] = new byte[=size]:
byte reverszedirray[] = new byte[size]:
fileIn.read(arrav):
fileIn.clo=se(); /J/done reading, close the file
S/fprint the original array
System.ovut.printiln("\n The original array i=s: “n");
Evestem.ocut.print(new String(arravy)):
for{int i = 0; i < Bize; ++i){
reversedArray[i] = array[size - 1 - 1]:
Y//fend for loop
S/fprint the reversed array
System.out.println("'n'n The reversed array is: “n ");
Svstem.cnt.print(new String(reversedarrav)):
fileCut.write(reversedArray).

}/end try statement o

COP 3330: Javal/O Page 20 © Dr. Mark Llewellyn

r%lﬂmm;mmmm@ \ | .:. |

File Edit Source Refactor Navigate Search Project Run Window Help 4 ReadFile3.java)
% v U B = L4 L4 T it L4 N ‘D’ v v L4
B [B]@[_] '7'%? ¥ % el C| A= P AR AR The catch

-

1) ReadFiljova | 2 shoppingistot | 1) ReadFilljova | 1) “Readfiledjava 3.) readtatesav blocks

4 FF

}//end try statement

catch (FileNotFoundException fnfe){
System.out.println("Can't find the file!");

}//end catch block 1

catch (IOException ioe){
System.ouvt.println("Problem reading the file!");

}//end catch block 2

}//end constructor
}//end class

]

‘ Writable Smart Insert ‘ 17:61

COP 3330: Javal/O © Dr. Mark Llewellyn

Output from ReadFile3. java

= - =
El Console i3 i %ﬁ| =3¢ 5E =
<terminated> ReadFile3 [Java Application] C:\Program Files\Javalyrebh\binyjavaw.exe (Jul 25, 2011 1:05:45 PM)

The original array is:

apples, eggs, gummi bears

reppers, milk, coke

tea, pears, chicken

shrimp, onions, frosted flakes
The reversed array is:

sekalf detsorf ,snoino pmirhs
nekcihc ,=sraep ,aset

ekoc ,klim ,sreppep

sraeb immug ,=gge ,selppa

COP 3330: Javal/O Page 22 © Dr. Mark Llewellyn

Buffered Character Stream File 1/0O

« Reading and writing program data using byte stream classes is
straightforward, but it presents problems for the Java
programmer.

« The data comes into the program as bytes (integers) or in byte
arrays. (integer arrays). If the programmer needs to work with
each data item in the byte array, they would need to find a way to
separate the individual data items.

— For example, if we needed to list the items in our shopping list, we would
need to go through the byte array, pulling out the letters, and starting a new
item when we encountered a comma or a new line.

— If you’re thinking that there must be a better way to do this, you’re right!

’

COP 3330: Javal/O Page 23 © Dr. Mark Llewellyn g’)n

Buffered Character Stream File 1/O (cont)

 Worapper Classes

— Java provides many wrapper classes. A wrapper class is a
programming term that is part of the Java jargon. If you look for
Java classes with “Wrapper” in the name, you will not find any.

— Worapper classes wrap one class in another class, thus improving the
features of the first class.

— You’ve already used the Integer, Double, and Float
wrapper classes. Each of these classes wraps a single primitive
data type value into a class and provides useful methods for the
programmer who Is working with the primitive type values.

— For example, the BufferedReader wrapper class provides a
readLine () methods to read data one line at a time.

’

COP 3330: Javal/O Page 24 © Dr. Mark Llewellyn g’)l

Buffered Character Stream File 1/O (cont)

* For 1/O, Java provide stream buffering classes that
provide the programmer with a means to attach a
memory buffer to the I/O streams.

« Having a memory buffer attached to the 1/O stream
allows the programmer to work on more than one byte
or character at a time.

« There are buffered classes for both byte streams and
character stream use.

.
COP 3330: Java l/O Page 25 © Dr. Mark Llewellyn g);

Buffered Character Stream File 1/O (cont)

« Java’s FileReader class allows you to read a data
file as characters instead of bytes.

« You can wrap the FileReader class In a
BufferedReader class, which provides a
readLine () method and the ability to read a data

file one line at a time.

e This is done with a line of code such as this:

BufferedReader br = new BufferedReader (

new FileReader (FILE NAME)) ;

[
COP 3330: Javal/O Page 26 © Dr. Mark Llewellyn @j

BufferedReader Methods

void close () : Closes the file and releases any resources associated with the
output stream.

void mark (int readAheadLimit) : Marks the present position in the stream.

boolean markSupported(): Returns true if this stream supports the mark()
operation. The BufferedReader class supports this operation.

int read () : Reads asingle character.

int read(char[] buf, int offset, int length) : Reads characters
into a portion of an array.

String readLine () : Reads a line of text.
boolean ready () : Returns true if this stream is ready to be read.
void reset () : Resets the stream to the most recent mark.

long skip (long n) : SKips n characters in the stream. Returns the number of
characters actually skipped.

COP 3330: Javal/O Page 27 © Dr. Mark Llewellyn

Buffered Reader Examples

* In order to Iintroduce you to some other constructs in Java, the
next program, in addition to used a buffered reader object, I’ve
used vectors and made the program a GUI.

« The second example is also a GUI but reads multiple file lines
per activation.

 When programming with data files in any language, it is
Important that the programmer know how the data file is
designed. The programmer must write the corresponding read
statements to match the file design in order to read the file
accurately.

— In this case the file consists of one state name per line in the file.

COP 3330: Javal/O Page 28 © Dr. Mark Llewellyn g’)n

[J] ReadFilel java |] shoppinglistsd |)] ReadFile2java | i) ReadFiledjava

= f/readStates.java
FSid=se a BufferedBEeader and FileReader to read a data file one line at a time.
SAMJIL 7/525/2011

“import java.util.Vector;
import java.io.FileReader;
import java.io.BufferedBeader; readstates_java
import java.io.ICException:
import java.awt.event.WindowEwvent:;
import java.awt.event.Windowhdapter;

import javax.swing.JFrame:;
import javax.swing.JComboBoX;

poblic class readStates extend=s JFrame i
SfCreate a Vector obiject, which iz a dyvnamic array that hold objects.
o private static Vector statelist = mnew Vector():

= public readStates|() {
super|("State Li=st™):
Y/ /end default constructor

private wvold readStateli=st () throws ICException {
Sf Conwvenience class for reading character files.
FileReader fr = new FileBReader | "Statelist.txt"):
S fBEead text from a character—-input stream, buffering characters =o as
SAito provide for the efficient reading of characters, arrays, and lines.
BufferedReader br = new BufferedReadexr | fxr)
S Holds the entire line read by BufferedReaders
String line;
S AThe ready () method returns truse as long a2 there are lines to read.

COP 3330: Javal/O Page 29 © Dr. Mark Llewellyn

)] ReadFilel java [’ shoppinglist.tet |/L-I-JT_] ReadFile2.java [}1] ReadFile3.java -ﬂ *rean
while| br.readyvi()) i
Fi0=e the buffered reader to read the string till Ym

line = br.readlLine () -
Svstem.ocunt.printiln{line) SAprint 1line to the command window
statelist.add|(lime) ; SlSadd seach line to the array

Yo Send while loop

S close the Buffered BReader readsuﬂesjava

br.clo=ze ()
YA end method readStatelist ()

(continued)

= pollic s=tatic volid main(String[] arg=s) {

readStates app = new readStates () ;s

tryd
app . readStatelist () !

YA Send cry sStatement

catch (ICException ioce) {
ioe.primtStackTrace ()
Svyvstem.=sxit{ 1) ;

YA Ffend catch block

Srfadd a listcener

=2 app . addWindowlListener [new Windowlhdapter () i
= pablic void windowClosing(WindowEwent)
1

Svstem.sexit(O0):
}

}}:; //edn addWindowListener

app.=secSize(200,75)

SAGEetc the frame's content pane and add the combo bhox to it.

app.gecContentFPane () .add (| new JComboBox | stat=eList)) !

S app.show ()

app.=setVi=sible (trae) ;

Y Send main

YA Send class

COP 3330: Javal/O Page 30 © Dr. Mark Llewellyn

Output from readStates.java

El Console &2

read5tates [Java Application] C:\Pre

\

hlabama
Lla=ska
Lrkan=as
California
Conmecticut
Delaware
Georgia
Florida
Indiana
I1linois=
Eentucky
Maine
Maryland
Minnesota
Hew York
Chio
Penn=sylvania
FEhode I=sland

| £| State List

2] State List | (oo o= |
Alabama -

|

This part of the execution
prints the contents of the file to
the command prompt window.

This is the GUI before clicking on
the state button. The drop-down
menu is not shown.

Texas Florida -

Virginia
:ng;af E The drop-down menu appears
dFlorida —° when the GUI button is clicked
pindiana & given the user the option of
i — selecting another state

Kentucky g -
NMmaine
|d{Maryland E
COP 3330: Javal/O Page 31 © Dr. Mark Llewellyn

Buffered Reader Example 2: readweather.java

« The BufferedReader readLine () method iIs handy anytime
the data file is organized with data on individual lines.

 In this next example, the data file represents weather data as a

mixture of textual and numeric information, yet the
readLine () method Is used for all the lines. The file is

organized in the following manner:

Date

Reporting Station

High Temperature in Fahrenheit degrees

Low Temperature in Fahrenheit degrees

Relative Humidity at 12 noon stated as a percentage 0.xx
Rainfall total in inches for past 24 hours

COP 3330; Javal/O Page 32 © Dr. Mark Llewellyn §/

f@ ReadFile2.java I/‘m ReadFile3.java Iz‘]l-ll readStates.java W_ WeatherSummanry.bd \I}}EE.

= f/readisather.java
SfWe read the data on Six lines using a separate read statement for each piece of data.
SMIL T7/25/2011

Zimport java.io.FileReader;

import java.io.BufferedBeader:;

import java.io.I0Exception:

import java.io.FileNotFoundException:
import javax.swing.JOoptionPane;

readWeather.java

public class readWeather |
= poblic static vold main{ String[] args) throws ICException {

final String FILENAME = "WeatherSummary.Cxt"™:
int exitCode = 0;
try {

BufferedBeader br = new BufferedBReader (new FileReader (FILENAME)) :
S¥fThe line holds the line read by BufferedReaders

String line, output:;

String reportingStation, date:

donble highTemp, lowTemp, humidity, rainfall:

SiWe have to make & separate read statements to gather the data from the file.
S/ The readlLine throws ICException if there'=s a problem.

SFfFirst line i= the date

date = br.readLine():

S second line is the =station

reportingStation = br.readLine () :

// third line is the high temp

line = br.readLine () :

highTemp = Double.pars=eDouble(line) ;

//fourth line is the low temp

SSfcombine into one line

lowTenp = Double.parssDouble | br.readLine())

Sf f£ifth line is the humiditcy

COP 3330: Javal/O Page 33 © Dr. Mark Llewellyn

] =

| ReadFile2 java (‘m ReadFiled.java (‘m readStates,java (m *readWeather,java o2 Weathersummary.td w 63

/f fifth line is the humidity *
humidity = Double.parseDoubls(br.readLline()); readWeather.java
humidity *= 100.0; (continued)

//last line is the rainfall
rainfall = Double.parseDouble(br.readLine() };
output = "Date: " + date + "\nEeporting Station: " 4 reportingStation +
"\nTemp Range: " + highTemp + "™ to " + lowTemp + " (degrees F)" +
"\nHumidity at noon: " + humidity + "% ‘n(Rainfall (past 24 hours) = " + rainfall
JOptionPane.shovMessageDialog(null, output, FILENAME, 1);
br.close ().
}//end try statement
catch (FileNotFoundException fnfe) {
JOptionPane.showvMessageDialog(null, "Can't find the file!"™, FILENAME, 2);
exitCode = 1; //had a problem
}//end catch block 1
catch (ICException ioe) {
JOptionPane.showvMessageDialog(null, "Trouble!",| FILENAME, 2);
exitCode = 1;
}//end catch block 2
System.=x1t(exitCode);

m

}//end main method
v/ /end class

1

COP 3330: Javal/O © Dr. Mark Llewellyn

BE HFH e D — Input file

8 WeatherSummary.txt

4J] readStates.java [J] readWeather,java WeatherSummary.bet &2 Pee

July 25, 2011
0IAa - Orlando Internatiomal Airport
a7

76
0.fe
0.0

4

Weather Summary lﬂ.

Date: July 25, 2011 —

Reporting Station: OIA - Orlando International Airport
Temp Range: 97.0 to 76.0 (degrees F)

Humidity at noon; 64.0%

(Rainfall (past 24 hours)=0.0")

Output from readWeather.java

OK

COP 3330: Javal/O Page 35 © Dr. Mark Llewellyn

String Tokenizers

If the data file Is organized so that there is one data item on each
line, the job of reading the data from the file is simple. The
BufferedReader’s readLine () method returns each line as a

String and it can be converted to a numeric value if necessary.

What happens when there is more that one data item per line in
the file? Maybe there is a series of text items or numbers that are
separated by commas in the file. There may also be characters in
the file that you do not want to process in the program. How do
you handle these situations?

Java has a helper class, called StringTokenizer, which
helps to separate individual parts of the String read in by the
readLine () method.

’

COP 3330: Javal/O Page 36 © Dr. Mark Llewellyn g’)l

String Tokenizers (cont.)

e The StringTokenizer class Is most helpful when the
program reads textual data from a file.

 The lines read from the data file are read as Strings. The
StringTokenizer can be used on any String, such as the
Input from JOptionPane.showInputDialog(), a
String that you Initialize in a program, or a String that is
filled by a readLine () method.

« The StringTokenizer class has limited capabilities
Involving what can be pulled out of the String. A good rule of
thumb is that if a single character separates data items in the line,
such as a comma, or a space, the StringTokenizer class Is
the one to use.

’

COP 3330: Javal/O Page 37 © Dr. Mark Llewellyn g’)n

String Tokenizers (cont.)

« For more precise or complicated pattern matching, you would
need to use the Pattern and Matcher classes from Java’s
java.util.regex package.

» Recall the example ReadFilel.java from page 12 in this set of
notes. This program read a “shoppinglist.txt” of 3 items
per line which were separated by commas and spaces in the lines
of the data file (see page 11). In ReadFilel.java we read this file
one byte at a time and simply echoed it to the output.

 In the next example, we will read the same file but there will be
only commas in this file, no spaces between the data items. If we
want to handle each of the items in the list separately, we need to
pull each item off the line when the program reads the line from
the file.

’

COP 3330: Javal/O Page 38 © Dr. Mark Llewellyn g’)l

String Tokenizers (cont.)

As the first line of the file is read into a String variable, we
must pull out “apples”, “eggs”, and “gummi bears” and place
them iIn separate variables. This Is the job of the
StringTokenizer.

The StringTokenizer is passed the String we want it to work
on, and we must tell it what delimits each data item. In this
case we need to tell it that the delimiter in the file Is a comma.

We’ll ask the tokenizer object how many tokens it finds in our
line and then we’ll loop through the object, extracting the
strings that are delimited by the commas.

The program readFileToken.java Illustrates this
process.

’

COP 3330: Javal/O Page 39 © Dr. Mark Llewellyn g’)l

— -

EI shoppinglist.bx (EI read5tates.java ﬂil readWeather.java (Weathersummary. bt (: :
readFileToken.java
= //File: readFileToken.java L

//fuses data file shoppinglist.txt
//Uze a StringTokenizer to separate data items from a String read by the BufferedReader.
f/MIL 7/25/2011

= import java.io.FileReader:;
import java.io.BufferedReader;
import java.io.IQException;
import java.io.FileNotFoundException;
import java.util.S5tringTokenizer;
import javax.swing.JOptionPane;

public class readFileToken {
= public static void main{ 5tring[] args) throws IOException {
final 5tring FILENAME = "shopplinglist.txt";
int exitCode = 0;
try {
//FileNotFoundException thrown if we can't find the file.
BufferedReader br = new BufferedReader (new FileReader (FILENAME)) ;
f/The line holds the line read by BufferedReader
String line;
// The string tokenizer class allows an application
// to break a string into tokens.
StringTokenizer token;

#l - - - — ' M

COP 3330: Javal/O Page 40 © Dr. Mark Llewellyn

+F

=| shoppinglist.te [m readStates.java [m readWeather.java [WeatherSummary.txt [m *readFileToken java &% &4

//both ready and read might throw ICException readFiIeToken.java
while({ br.ready() } {1 (COntInued)
String storeltem;
'/ use the buffered reader to read the string till \n
line = br.readLine():
/ construct with "," as the element delimeter

token = new StringTokenizer(line, ",") je
int howManyTokens = token.countTokens():
System.out.println("\nThe line: "™ 4+ line + " has " + howManyTokenz + "/tokens");
for{int i = 0; i < howManyTokens=s; ++i){
storeltem = token.nextToken():

The StringTokenizer is
operating on String
variable 1ine and the

System.out.println(storeltem)
}//end for loop
}//end while loop

// close the Buffered Reader delimiter is SpeCiﬁed as a
br.closel(): ’ -

Y//end try statement

catch (FileNotFoundException fnfe) i
JOptionPane. showvMessageDialog(null, "Can't find the file!"™, FILENAME, 2):
exitCode = 1; /J/had a problem

y//end catch block 1
catch (ICException ioe) {
JOptionPane. showMessageDialog(nnll, "Trouble!"™, FILENAME, 2);
exitCode = 1;
Y//end catch block 2
System.exit(| exitCode):;
Y//end main method

COP 3330: Javal/O Page 41 © Dr. Mark Llewellyn

Output from readFileToken. java

shopplinglist.tu Iﬁ

E{Ei Can't find the file! ‘\5\\\““-~\\\‘

OK

e

£l Console X %| Gk cEEE £ &
<terminated> readFileToken [Java Application] C:\Program Files\Javaljref’\bin'javaw.exe (Jul 25, 201

The line: apples, eggs, gummi bears has 3 tokens
apples

eggs

gummi bears

The line: peppers, milk, coke has 3 tokens

peppers —

milk
coke

The line: tea, pears, chicken has 3 tokens
tea

pears

chicken

The line: shrimp, onions, frosted flakes has 3 tokens
shrimp

onions

fro=sted flakes

This execution specified the
file named “shopplinglist.txt”,
which was not a valid file.
This generated an error
message through the
exception handler.

This execution
specified a correct
input file. You can
see the output from
the StringTokenizer

(
COP 3330: Javal/O Page 42 © Dr. Mark Llewellyn @j

String Tokenizers (cont.)

In this next example of using the StringTokenizer class,

everything is Dbasically the same as

it was for the

readFileToken. java program with the exception that now,

there are a varying number of items per line in the data file. In
addition, we’ll add some characters to the file that we want the

tokenizer to strip out for us.

hammer, nails, #10 x 1-1/4” wood screws
10d nails, hack saw blades, teflon tape, ruler
pneumatic finishing nailer, pliers

#6 x 1” allen head bolt

PVC cement, PVC primer, scroll saw

7/16” open end wrench, 2" impact socket

N

file: toollist.txt

COP 3330: Java l/O Page 43

© Dr. Mark Llewellyn

String Tokenizers (cont.)

» These tasks pose no problem for the StringTokenizer.
For example, If we are not sure how many tokens appear on a
given line of the data file, we’ll simply run a loop extracting
values and use the hasMoreTokens () method, which returns
true if there are more tokens in the tokenizer object.

« The format of the file we will use will contain a space after each
comma. We want to strip out this leading space so that the data
items are correctly represented. Thus, when we extract
“ruler” from the third line, the tokenizer extracts ™
ruler” because It extracts the data between the commas,
Including the leading space.

’

COP 3330: Javal/O Page 44 © Dr. Mark Llewellyn g’)l

String Tokenizers (cont.)

» Use the String class’s trim () method that returns a
copy of the String with leading and trailing
whitespace characters omitted.

* Once this Is done the strings are stored In a Vector
object named partsList. [Recall that a vector is a

dynamic array (see Java.util.Vector for
more).]

[
COP 3330: Javal/O Page 45 © Dr. Mark Llewellyn @j

r shoppinglist.td (m readWeather.java I/m readFileToken.java toollist.td \I e

= ffFile: readTool=s.java n=ze=s data file toolli=t.LCxXC
J/MT=ze a StringTokenizer to =Separate comma delimited data items with leading
SSspaces from a S5tring read by the BufferedReader.
SrlAhdd them into a Vector to be sorted into alphabetical order.
S MJL 7/25/72011

Zimport java.io.FileReader;
import java.io.BufferedReader:)
import java.io.IlCException: readTOOIS'Java
import java.io.FileMotFoundException:
import java.util.StringlTokenizer;
import javax.swing.JOoptionPane:;

import java.util . Vector:
import java.util.Collections;

public clas=s readTools {
poklic static void main(String[] args) throws ICException

f/final String FILENAME = "PartsListl.txt™:
final String FILENAME = "toollist.Cxt"™;

int exitCode = 0;

Vector part=sList = new YVector():

try {

SAFileNotFoundException thrown if we can't find the file.
BufferedBeader bufBReader = new BufferedBReader (new FileReader (FILEHAME)) -
SAThe line holds the line read by BufferedReader
String line;
S The string Ltokenizer helps us separate the data items.
StringTokenizer =zepToken;
Sfboth readvy() and read() might throw IJOException
while | bufReader.readyi()) {
String partc;
S uase the buffered reader to read the string t©ill “Ym
line = bufReader.readLine() :

COP 3330: Javal/O Page 46 © Dr. Mark Llewellyn

e
f choppinglist.tct rm readWeather.java rm readFileToken.java (D *readTools.java &2 readToolsJ'ava
—_— i construct with "," as the element delimeter (Corn"“Jed)
Collections sepToken = new StringTokenizer(line, ™,"):
method while| =sepToken.hasMoreElements ())4
part = seploken.nextToken() -
SOﬂO AATrim off the leading and trailing whitespace characters.
allows us to part = part.trimi() :
sort the Siadd the part to the partslList arrav
contents Of partsli=t.add (part) ;
the Vector. YA /fend inmer while loop
Wriend outer while loop
The Collection=s class works on vector objects.
f{?he static sort method sorts the elements found in the wector object.
Collections.sort(parcslist)
String output = "";
for(int 1 = 0; i « partslist.=zize(): ++1i) {
SAiWe get each element from the list and tack on a2 \m
output += partsList.get (i) + "Wwo":
Yy S fend for loop
close the Buffered Reader
bufReader.clo=ze () :
JoptionPane . showvMessageDialog(nnll , output, FILEMNAME, 1) :
¥
catch(FileMotFoundException fnfe) i
JoptionPane . shovMessageDialog(mmll, "Can't find the file!"™, FILEMAME, 2):
exitCode = 1: Flhad a problem
¥
catoch (I0CException ioce) {
JoptionPane. shovMessageDialog(nmll, "Troukle!"™, FILEWAME, 2):
exitCode = 1;
H
System.=xit({ exitCode) ;
¥
¥

COP 3330: Javal/O Page 47 © Dr. Mark Llewellyn

Output from readTools. java
' toollist.txt ﬁql

,”i #10 x 1-1/4" wood screws
#6 x 1" allen head bolt
1/2" impact socket wrench
10d nails
716" open end wrench
PVC cement
PVC primer
hack saw baldes
hammer
nails

Notice that the invocation of
the Collections method

pliers sort () has produced a

pneumatic finishing nailers
ruler

sorted list of tools.

scroll saw
teflon tape

OK

COP 3330: Javal/O © Dr. Mark Llewellyn

File Output with the BufferedWriter Class

e The BufferedWriter class works in a similar manner to
the BufferedReader class.

* A FileWriter object is wrapped in a BufferedWriter
class which makes it possible to write Strings to an
output file.

« The BufferedWriter constructors require a FileWriter
object. The FileWriter object is created and then used
In the constructor for the BufferedWriter.

¢

COP 3330: Javal/O Page 49 © Dr. Mark Llewellyn g’)n

File Output with the BufferedWriter Class (cont.)

« As we’ve seen before, this can be broken up into
two separate steps:

//The BufferedWriter wraps the FileWriter object

//This allows us to write a data file one line at a time
FileWriter writer = new FileWriter () ;

BufferedWriter bufWriter = new BufferedWriter (writer);

 As Dbefore, the more common and preferred
technigue Is to combine this into one line:

BufferedWriter bufWriter = new BufferedWriter (new FileWriter()):;

COP 3330: Javal/O Page 50 © Dr. Mark Llewellyn

BufferedWriter Methods

void close () : Closes the file and releases any resources associated with
the output stream.

void f£lush () : Flushes any characters out of the output stream.
void newLine () : Writes a line separator into the output stream.

void write(char[] buf, int offset, int length): Writes

a portion of a character array, beginning at the offset and writing length
number of characters.

void write (char c): Writesasingle character.

void write (String s, int offset, int length): Writesa
portion of the String, beginning at the offset character. Writes length
number of characters.

COP 3330: Javal/O Page 51 © Dr. Mark Llewellyn

File Output with the BufferedWriter Class (cont.)

 In the next example program, we’ll read the names of bicycles
from the file bikes.txt and write all of the bikes in which
are named Colnago into a output file named colnagos. txt.

« The input file (shown on page 57) contains one bike name per
line.

« In the program we create BufferedReader and
BufferedWriter objects and then read each line, searching
It with the String class’s indexOf () method. The
indexOf () method returns the location of the substring in
the String and a —1 if it cannot find the substring. If we
locate a Colnago bike, we’ll write its entire name to the output
file using the BufferedWriter class’s write () method
that accepts strings as input.

’

COP 3330: Java l/O Page 52 © Dr. Mark Llewellyn gjn

File Output with the BufferedWriter Class (cont.)

« The write () method we’re using writes a

portion of the String and requires the beginning
position and the number of characters to be
written.

— Since we want to write the entire string, we’ll use an
offset of 0 and bikeLine.length() for the
number of characters to be written.

COP 3330: Javal/O Page 53 © Dr. Mark Llewellyn

-

shoppinglist.td ﬂII readFileToken.java ﬂ?_l readTools.java lf toollist.bd M}H

//Write all the Colnagos to colnagos.txt file.
FMMIL 7/25/2011

= import java.io.FileReader;
import java.ioc.FileWriter:
import java.io.BufferedReader:;

import java.io.Bufferediriter:

import java.io.IlC0Exception;

import java.io.FileNotFoundException:
import javax.swing.JOptionPane:

FindColnagos.java

public class FindColnagos {
J poblic =tatic void main({ Sctring[] arg=s) {

final String FILENAME = "bike=s.tTxt":
final S5tring FILECUT = "colnagos.TxXL":
int exitcCode = 0O;

try {

SiFileMotFoundException thrown if we can't find the file.
BufferedReader bufReader = new BufferedBeader | new FileReader (FILEHNAME)}) ;
SfCreate a BufferediWriter object to write our Strings
BufferedWriter bufWriter = new BufferediWriter(new Eilhﬂriter: FILEQOUT))
Si/The line holds the line read by BufferedBeader
String bikelLine;
int colnagoPosition;
Siboth ready and read might throw IOException
while | bufReader.readvi() } {
£ u=ze the buffered reader to read the string till “\m

bikelLine = bufReader.readLine()

colnagoPosition = -1;

SA/The index0f () needs exact String, returns the position if Slit finds
colnagoPosition = bikeline.indexOf ("Colnago™) ;

if (colnagoPosition >= 0} { //we have a Cglnagg bike

Sfinputs to write (String, startWritingit, howManvyChars)
4 L) k

COP 3330: Javal/O Page 54 © Dr. Mark Llewellyn

m

WIETDkEH.java (m read Tools.java (toollist.bd (m *FindColnagos.java 2
I?E;p:ts Lo write (String,startWritingAt, nowManylhars)
bufWriter.write (bikeLine, 0, bikeLine.length()):

//write a newline into the file
bufWriter.newline () ; findCoInagos.java

(continued)

uses the last
form shown on
page 51

Yo/end if
Yo end
" close the Buffered Reader and Writer

bufReader.cloze ()
bufWriter.cloze (),

Y//end try statement

catch (FileNotFoundException fnfe) {
JOptionPane. showMessageDialog(mmll, "Can't find the file!"™,| FILENAME, 2);
exitCode = 1; /j/had a problem

}

catch (ICEXception ioe)
JOptionPane. showvMessageDialog(null, "Trouble!"™, FILENAME, 2):
exitCode = 1;

}

System.exit| exitCode);

COP 3330: Javal/O Page 55 © Dr. Mark Llewellyn

Output from

- File IO/ bikes.txt - Eclipse

Edit Mavigate Search Project Bun Window Help

i (@ Java)

e~
B [

=

-

b

[J] FindCelnagos.java bikes.bt &2 71

Eddy Merckx Team 5C Lotto,/Domo
Colnago Superissimo

Bianchi 5L3

BMC Pro Machine S5LCO1 - Astana
Colnago Owval Erono

BMC Streetfire S55X01

FlndColnagos java
o o= |

Input file: “bikes.txt”

/ Generated output file:
colnagos.txt

Bianchi FC Liguigas
Colnago Dream Rabobank
Bianchi FG Lite - Liguigas
Battalgin LAS4

Gio=s Torino Super

Colnago C50 Extreme

4

CAUsers\Mark Liewellyn\eclipse\COP 333... [l o= 3|

Eile Edit 5Search Miew Enceding Language
Settings Macre Run TexdtFX Plugins Window 2

& license bd]Ea cnume_ﬁﬂesgss] &l READ MEN! it IE ‘

Colnago Superissimo
Colnago ©wval Erono
Colnago Dream Rabobank

Colnago C50 Extreme

[y [- S T e T S

Ln:5 Col: Dos\Windows AMSI

COP 3330: Javal/O

© Dr. Mark Llewellyn

Final Example Program

* Our final example iIs a program that includes the
use of buffered readers and writers, string
tokenizers, and exception handling.

 The purpose of this program Is to read a file
containing trip expenses and sum the various
items and write the results to an output file.

— Input file: tripexpenses. txt

— Generated output file: totaltripcost. txt

COP 3330: Javal/O Page 57 © Dr. Mark Llewellyn

Final Example Program (cont.)

« The input file tripexpenses. txt contains the
following information.

denotes a comment and is ignored

This list the items and costs for a trip
Airline tickets

$1975.00

Rental Car

$379.99

Gas for the rental car

$68.00

Hotel for 3 nights

$190.18 $190.18 $179.74

Meals for 3 days

$89.68 $189.90 $78.50

Parking garage fees

$9.50 $9.50 $2.75

Toll fees

$3.75 $3.75

uncomment the next line to cause an error
Movie tickets

COP 3330: Javal/O Page 58 © Dr. Mark Llewellyn

Final Example Program (cont.)

« The program reads a line at a time and any line beginning

with a “#” i1s not processed. The program will assume that
If the line does not begin with a “#”, then it is a line that
contains expense items written with the “$” as the
delimiter, and the object is searched for tokens.

— Remember that the “$” is not part of the extracted part of the line,
and the nextToken () method pulls the data from between the
delimiters.

Once we’ve extracted a String containing a numeric value,
we’ll use the parseFloat() method to convert the value to a
float.

The numeric values will be summed and the total value is
written to the output file.

COP 3330: Javal/O Page 59 © Dr. Mark Llewellyn

Final Example Program (cont.)

* I’ve Included a bunch of JOptionPane message
noxes after each method call to trace how the

program Is executing.

» | would encourage you to play around with this
program. For example, see how many different
ways you can get it to throw and exception.

COP 3330: Javal/O Page 60 © Dr. Mark Llewellyn

ism readTools.java Ifm FindColnagos.java Ir bikes. b (tripexpenses.tdt |;| Iiiiiiﬁ W ﬁ ; on

= ffFile:TripExpenses.java,uses data file tripexpenses.LXt creates totalcost.tXL
S¥ Reads in the expense amounts from the file, strip off the
S¥{ & and parse the float wvalue from the String. If the line contains
S a # in the first character, we assume it iz a comment and ignore it.
S Thisz program has one try and many catch statements. The finally block
JS{ reports the results of the program.
S We keep count of the successful methods and write a finmal report in the finally block.
FA MJIL 752572011

©import java.io.*: TripExpenses.java

import java.util.StringTokenizer:;

import javax.swing.JOptionPane;

poblic class TripExpenses i
BEufferedReader reader;
BufferedWriter writer:
static int =sxitlods;
=tatic final 5tring FILENAME = "tripexXpenses.txXt™;
static final String FILESUT = "triptotalcost.txtc™;

L= public =static wvoid main(String[] args) i

TripExpenses app = new IripExpenses() s
int successfulMethods = 0; J/if we get 5, all iz well
try {

SO open the file for reading
app.openFileToRead ()
successfulMethods++;
JoptionPane. shovMessageDialog(noll,
"Input File opened successfully.‘\nAttenpting to read data.",FILENAME, 1) ;
S fRead the file parsing out the £ and tally the bBill
SFIEf there iz a problem with the read, we catch it here.
float billZmount = app.readFile () :
successfulMechods++;

COP 3330: Javal/O Page 61 © Dr. Mark Llewellyn

\J| readTools.java Irm FindColnagos.java (bikes.bdt If tripexpenses.txt I/m TripExpenses.java &2 P70

JOoptionFPane . shovMessageDialog(nnll,
"Read the data successfully”, FILENAME, 1): TripExpenses.java
open file for writing (Cont""Jed)
app.openFileToWrite () ;
successfulMechods++;
JOoptionFPane . shovMessageDialog(nnll,
"Cpened the output file successfully"™, FILEOUT, 1) :
FSAWNrite the total expense amount to the output file.
app.writeTripTotal (billimount) ;
successfulMethods++;

JOoptionFPane . shovMessageDialog(nnll,
"Have written the output file successfully"™, FILESUT, 1):
. close the files
app.closeFiles () ;
successfulMethods++;
JOoptionFPane . shovMessageDialog(nnll,
"Close the file=s successfully™, FILENAME+™ " +FILESUT, 1) :;
H
catch (ICException ioe) {
JoptionPane. shovMessageDialog(null,

"File errors.“wnExiting with error code 1.");
iope.printStackIrace () ;
exitlods = 1;

H
catch (HumberFormatException nfe) {
JOoptionFPane . shovMessageDialog(nnull,

"The file i= not in the proper formatc.YnExiting with error code 2.
nfe.printStackIrace () :
exitlodse = 2;
H
S/ report how many methods were called
finally {
if (successfulMethods == 5)

COP 3330: Javal/O Page 62 © Dr. Mark Llewellyn

3

fm read T ools.java rm FindCelnagos.java (bikes.tt r tripexpenses.tut ﬂII TripExpenses.java &2 70

finally {
if (zuccessfulMethods == 5) . TripEXpenses.java
JOptionPane . shovMessagelDialog(nnll, .
"Completed all method calls successfully. ™) (Cont""Jed)
else
JOoptionPane . shovMessageDislog (null,
"Completed " + successfulMethods 4+ "successful method calli=s).") !
H

System.sexit(exitlods) ;

= private volid writeTripTotal (float total) throws ICException {
¥ Uzse a DecimalFormat object to format our output numbers.
S fWe use the package.Class name here instead of importing it.
jJava.text.Decimal Format currency = new

java.text.DecimalFormat ("0.00™) ;

String howMuach = currency.format (total):
writer.write ("Your total tcrip expenses amounted o £7);
writer.write (howHuch, 0, howMuch.lengthi)):

writer.write("."}):
H
= private void openFileToRead|() throw=s IOException i
reader = new BufferedBReader (new FileReader (FILENAME)) :
H

= private void openFileToWrite () throws ICExceptioni
writer = new Bufferediriter (new FileWriter (FILESUT)) -

= private float readFile () throws NumberFormatException, IOException {
/f Holds the entire line read by BufferedReaders
String line;

COP 3330: Javal/O Page 63 © Dr. Mark Llewellyn

}El readTools,java ﬂII FindColnagos.java (bikes. et (tripexpenses.bd i 1 70
S Holds the entire line read by BufferedReaders
String line; TripExpenses.java
float amount = 0.0f; (Conﬁnued)

/4 The string tgkenizer class allows an application
4 to break a =tring into tokens.
StringTokenizer tokemn;
while (reader.readv()) {
S use the buffered reader to read the string t£till “Ym
line = reader.readLine():
SiLine example: # Toll Fees
SALine example: £3.75 £3.75
SiWe want to pull out the lines with the costs=.
if| line.charit(0) = "$"'3{
SfThe £ is the delimiter and separates our tokens.
FSi0ur token will hawve 303X form.
SiThe parseFloat ignores the trailing spaces.
token = new StringTokenizer(line, "E");
Sf Beparate the slements
while (token.hasMoreElement=()) {
amount += Float.parssFloat(token.nextToken()) !
¥

}
retorn amount:?
¥
= private void clo=seFile=s() throws ICException {
reader.clo=e () ;
writer.claose () !

COP 3330: Javal/O Page 64 © Dr. Mark Llewellyn

Output from TripExpenses. java

& b
tripexpenses.txt Iﬁ

First output from
TripExpenses.java

£Te :
'\‘I_,,J Input File opened successfully.
Attempting to read data.

OK

L Second output from
TripExpenses.java. Notice
rtr'i|:n.=_l:-:|:|v.=_lr1s.45-s.t:v:‘I: Iﬁw hOW the header Iine iS dISp|ayIng

the name of the input file in these

'ii_:l Read the data successfully first tWO OUtpUtS

OK

Third output from
TripExpenses.java. Notice

[niptotalcost. lﬁ1
: Pt_t e that the header line has changed
'ii_} Opened the output file successfully to reflect the OUtpUt file name.

OK

COP 3330: Javal/O Page 65 © Dr. Mark Llewellyn

Output from TripExpenses.java (cont.)
[triptotalcost.bd |

Fourth output from
'ii_::' Have written the output file successfully TrlpExpenseS = J@we

OK

r tripexpenses.ixt triptotalcost.ixt Iﬁw . Flfth OUtlet from
TripExpenses. java.

£TE
'\‘l_,,-' Close the files successfully

OK Sixth output from
- TripExpenses.java.
r EE b

Message

'ii_} Completed all method calls successfully. The f||e “totaltripcost .txt”

OK produced by the program

TripExpenses.java as displayed in
Notepad.

o = ! @IB]|#¢' B | |ﬂi;ﬁ~.‘| % '3|h'|.‘"—'-l.| ! ‘-;I|

license b l = course_styles.cez l = READ ME! bt] = Gart java l =l colnagos b [=] triptotalcost b l

1 Your total trip expenses amounted to $3428.15.

COP 3330: Javal/O Page 66 © Dr. Mark Llewellyn

